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Abstract

There are two cases presented in this paper: the effects of multiple vibration neutralizers on the kinetic
energy of a continuous structure, all tuned to a particular natural frequency, and when the tuning ratio of
each neutralizer is optimally adjusted at each excitation frequency using quadratic minimization technique.
In the first case, theoretical formulations are developed to calculate the width of the separation between the
new resonances and the kinetic energy reduction. The width between the new resonances is found to be a
function of the total mass of the neutralizers and the modal amplitudes at the neutralizer’s location,
whereas the kinetic energy reduction is determined by their total damping ratios, total mass and also the
modal amplitudes at their respective locations. In the second case, it is found that the reduction of the
kinetic energy in the frequency range of interest increases with the number of optimally detuned
neutralizers, and the reduction is comparable to that of the feedforward active control method. Simulations
are presented to facilitate better understanding on the control effects using multiple vibration neutralizers.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The vibration neutralizer has been used in many applications since invented. In the early years,
the device was used to control the response of a lumped-mass structure or the displacement of a
see front matter r 2004 Elsevier Ltd. All rights reserved.
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single-degree-of-freedom system. The neutralizer was designed in such a way that its natural
frequency either (1) coincides with the problematic resonance frequency of the host structure or
(2) coincides with the frequency of the primary force [1]. The role of the vibration neutralizer on
the frequency response of such a problematic structure has been well understood and has
appeared in many text books, for example by Den Hartog [2], Hunt [3] and Beards [4], just to
name a few.
The first known attempt to use a neutralizer as a control device for the vibration of a

continuous structure was conducted by Young in 1952 [5–7]. He conducted an investigation on
the displacement of a cantilever at the neutralizer attachment point with the neutralizer tuned to
the first natural frequency of the cantilever. It was then followed by other researchers, for example
by Neubert [8] on longitudinal vibration of a bar, Jones et al. [9] on a clamped–clamped beam and
Ozguven and Candir [7] on a cantilever using two neutralizers.
The application of vibration neutralizer has been broadened when Sun and his co-workers

conducted an experiment on the global control of vibration and sound power transmission through
an aircraft panel. They concluded that the vibration neutralizer is effective in suppressing the
vibration transmission from the aircraft propellers [10]. In 1996 and 1997, Charette and his co-
workers published two papers concerned with experimental work on the control of sound radiation
from a plate using two globally detuned tunable vibration neutralizers [11,12]. Later, Huang and
Fuller [13,14] carried out their investigation on a cylindrical shell to reduce the interior sound field
with a reduction of more than 20dB in the acoustical potential energy at a certain frequency.
In respect to global vibration control, Dayou and Brennan [15] proposed an optimization

method of the tuning ratio of a single vibration neutralizer. The method, which is by using the
quadratic minimization technique, provides a way to determine the optimal tuning ratio that
minimizes the kinetic energy of a continuous structure. The optimization was then verified on a
simply supported beam [16]. They found that an optimal neutralizer can be as effective as an
active control method for a single-frequency excitation problem if it is properly optimized.
The investigation in this paper is an extension to the previous work reported in Refs. [15,16] on

the global vibration control of a structure, but by using multiple vibration neutralizers.
Theoretical formulations on the effects of changing the location, mass and damping ratios of
multiple vibration neutralizers, tuned to a particular natural frequency of the host structure, are
presented. The effects of multiple optimally detuned vibration neutralizers and comparison with
active control, particularly the feedforward technique, are also discussed. Throughout the paper, a
simply supported beam in an infinite baffle is used as a host structure with the dimensions of
1� 0:0381� 0:00635m3. The density, Young’s modulus and modal damping of the beam is
7870 kg=m3, 207E9 and 0.005, respectively, and the beam is excited by an acoustic plane wave of
single frequency with unity pressure amplitude and incident at 45�.
2. Kinetic energy of a structure

In general, the dynamic response of a general type of structure (Fig. 1) at any point in terms of
its displacement can be expressed as [17]

wðxÞ ¼ UTq; ð1Þ
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Fig. 1. A general structure with multiple neutralizers attached.

J. Dayou, S.M. Kim / Journal of Sound and Vibration 281 (2005) 323–340 325
where U and q are the M � 1 vectors of the normalized mode shape of the structure evaluated at
point x and theM � 1 vector of the modal displacement amplitudes, respectively. The superscript
T indicates the transpose of the vector and ejot time dependency in Eq. (1) is suppressed for
clarity.
The modal displacement amplitude of the structure is

q ¼ Agp; ð2Þ

where A and gp are theM � M diagonal matrix of the complex modal amplitudes of the structure
and M � 1 vector of the generalized primary force acting on the structure, respectively. The mth
component of the complex modal amplitudes is Am ¼ 1=Mbðo2m � o2 þ i2zmoomÞ, whereMb, zm,
om, and o are the total mass of the structure, modal damping ratio of the structure, its circular
natural frequency, and circular frequency of the excitation force, respectively, and i is the
imaginary number,

ffiffiffiffiffiffiffi
�1

p
.

In order to minimize the vibration amplitude of the structure, secondary forces may be applied.
In this case, the modal displacement amplitudes in Eq. (2) is written as

q ¼ Aðgp þ gcÞ; ð3Þ

where gc is the secondary control force term in its generalized form which is

gc ¼ Wfc; ð4Þ

with W being theM � J matrix of normalized mode shape of the structure, where the entry of fmj

is the modal amplitude of the structure at the jth secondary force location, and fc is the j-length
vector of the secondary forces amplitude acting on the structure. If fc is the vector of the
secondary forces generated by J-number of neutralizers (refer to Fig. 1), then it can be written in
terms of the neutralizer’s dynamic stiffness matrix, which is fc ¼ �KwðxjÞ. K is a diagonal J � J
dynamic stiffness matrix of the neutralizers and wðxjÞ is the J-length displacement vector of the
host structure evaluated at the location of the jth neutralizer. The dynamic stiffness of the jth
neutralizer is

Kj ¼ �Mjo2
1þ i2zjXj

1� X2
j þ i2zjXj

 !
; ð5Þ

where zj is the damping ratio and Xj ¼ o=oj is the tuning ratio of the jth neutralizer, oj being the
natural frequency of the neutralizer given by ðkj=MjÞ

1=2, and kj and Mj are the neutralizer
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stiffness constant and mass, respectively. Using Eq. (1), the vector of the generalized forces of the
neutralizers can be written as

fc ¼ �KWTq: ð6Þ

By combining Eqs. (3) and (6), the vector of the modal displacement amplitudes of the coupled
system—host structure and neutralizers—can be written as

q ¼ ½Iþ AWKWT

�1Agp; ð7Þ

where I is the identity matrix. For a single neutralizer, Eq. (7) can be simplified, which enables one
to carry out theoretical investigation rather than numerical simulations only [17].
The above derivations can be used for all type structures with all boundary conditions.

However, a simply supported beam is assumed in this paper for the simplicity of discussions. In
this case, the time-averaged kinetic energy of the beam can be expressed as

KE ¼
Mbo2

4
qHq; ð8Þ

where Mb is the total mass of the beam and the superscript H denotes the Hermitian transpose.
The kinetic energy of the beam with neutralizers attached can be determined by substituting the
modal displacement amplitude’s vector in Eq. (7) into Eq. (8), while kinetic energy of uncontrolled
beam can be obtained by substituting Eq. (2) into Eq. (8), or simply by setting the K in Eq. (7)
zero.
3. Control of kinetic energy using multiple vibration neutralizers tuned to a natural frequency of a

structure

In classical applications, a neutralizer is used for local control of a point response, collocated or
non-collocated. For that case, the neutralizer is either tuned to a problematic resonance frequency
or to a troublesome excitation frequency away from the resonance region. It is therefore
interesting to investigate how the neutralizer affects the global response of a continuous structure
such as kinetic energy in comparison with the classical applications. Some of these control effects
have been discussed by the author elsewhere for a point force excitation with a single neutralizer
attached on the structure.
In global vibration control, neutralizers can be used in three distinct ways: (1) The resonance

frequency of the neutralizers is fixed to a problematic frequency; (2) The resonance frequency are
always tuned to the excitation frequency (tuned neutralizers); and (3) The resonance frequency of
the neutralizers is optimally tuned to a value that minimizes the global vibration amplitude
(optimally detuned). The aim of this section is to investigate the global effects of multiple
neutralizers tuned to a particular frequency of the structure (case no. 1), which is the natural
frequency.
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3.1. Frequency separation of the new resonances with multiple tuned neutralizers attached

To illustrate the effects of the tuned neutralizer on the kinetic energy of a structure, the
application of a single neutralizer is first investigated numerically. It is applied to a simply
supported beam at its mid-point. The beam is excited by acoustic plane wave where the derivation
of its generalized force is given in the appendix. The acoustic plane wave is used to provide
distributed force rather than a point force as in the previous investigations. The neutralizer is then
applied at few other locations for comparisons. For the same neutralizer location, simulation is
carried out to visualize the effects of changing the neutralizer mass and damping ratio. In the
investigation, the resonance frequency of the neutralizer is tuned to the first natural frequency of
the beam.
Fig. 2(a) shows the kinetic energy of the beam, in the frequency range close to its first natural

frequency, for three neutralizer locations. The neutralizer mass is fixed at 5% of the beam ðm ¼

0:05Þ and damping ratio is z ¼ 0:001. Similarly, Fig. 2(b) shows the kinetic energy when the
neutralizer location is fixed at x ¼ 0:5L with the same value of damping ratio ðz ¼ 0:001Þ but for
different mass. A numerical simulation is also carried out for different values of neutralizer
damping ratio but the location and mass are fixed at x ¼ 0:5L and m ¼ 0:05, respectively, and this
is shown in Fig. 2(c).
The neutralizer effects on the kinetic energy shown in Fig. 2 are similar to that of a two-degree-

of-freedom system where application of an auxiliary system splits the host resonance frequency
into two. It is well known that for the two-degree-of-freedom system, the width between the new
resonances is determined by the neutralizer mass alone. In the case of the kinetic energy of a
beam, the width of the new resonance is also a function of the neutralizer location on the host
structure and is given by [17]

Dom ¼ om

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maf

2
mðxaÞ

q
: ð9Þ

Eq. (9) is the width of the frequency separation for a single neutralizer.
Using the procedure described by Dayou and Brennan [18], the separation between the two

resonances when multiple vibration neutralizers are attached can be derived as follows. For a
single neutralizer, the modal displacement amplitudes in Eq. (7) can be simplified to

qð1Þ ¼ Að1Þgp; ð10Þ

where

Að1Þ
¼ I�

K1

D
AUðx1ÞU

Tðx1Þ

� �
A ð11Þ

and

D ¼ 1þ K1U
Tðx1ÞAUðx1Þ: ð12Þ

Superscript (1) shows that only one device is attached and K1 is the dynamic stiffness of the
neutralizer. Consequently, for J number of neutralizers, the modal displacement amplitudes can
be written as

qðJÞ ¼ AðJÞgp; ð13Þ
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Fig. 2. Kinetic energy of the simply supported beam in the vicinity of its first natural frequency, without and with

neutralizer/s attached, where the neutralizer/s is/are tuned to this natural frequency. The first natural frequency of the

beam is 15Hz. In (d), the mass for each distributed neutralizer is equal and their total mass is kept the same to the single

neutralizer. (a) Neutralizer with different location ðm ¼ 0:05; z ¼ 0:001Þ; (b) neutralizer with different mass

ðx ¼ 0:5L; z ¼ 0:001Þ; (c) neutralizer with different damping ratio ðx ¼ 0:5; m ¼ 0:05Þ; (d) single and distributed
neutralizers with equal mass.
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where

AðJÞ
¼ I�

KJ

DðJ�1Þ
AðJ�1ÞUðxJÞU

TðxJÞ

� �
AðJ�1Þ

ð14Þ

and

DðJ�1Þ ¼ 1þ KJU
TðxJÞA

ðJ�1ÞUðxJÞ ð15Þ

with KJ as the dynamic stiffness of the Jth neutralizer. Around and at the mth resonance
frequency, the modal displacement amplitudes with one neutralizer attached can be well



ARTICLE IN PRESS

J. Dayou, S.M. Kim / Journal of Sound and Vibration 281 (2005) 323–340 329
approximated by [17]

qm ¼
gpm

A�1
m þ K1f

2
mðx1Þ

" #
: ð16Þ

Following the procedures described in Eqs. (10)–(15), the modal displacement amplitudes around
the resonance frequency can also be approximated as, after some mathematical manipulations

qm ¼
gpm

A�1
m þ K1f

2
mðx1Þ þ K2f

2
mðx2Þ þ � � � þ KJf

2
mðxJÞ

" #
ð17Þ

or

qm ¼
gpm

Mbo2m � Mbo2 þ i2Mbzmoom �
PJ

j¼1
Mjo2f2mðxjÞð1þi2zjXjÞ

1�X2
j þi2zjXj


 � : ð18Þ

Setting the damping in each neutralizers and the beam to zero would result in an infinite modal
amplitude at the new maxima. This means that the denominator of Eq. (18) is zero. Since all
neutralizers are tuned to the same frequency, it can be written that O1 ¼ O2 ¼ � � � ¼ OJ ¼ O, and
the denominator of Eq. (18) is simplified to

Mbo2m � Mbo2 � Mbo2mO
2 þ Mbo2O2 �

XJ

j¼1

Mjo2f
2
mðxjÞ ¼ 0: ð19Þ

Substituting O ¼ o=om and mj ¼ Mj=Mb we get

o4

o4m
� 2þ

XJ

j¼1

mjf
2
mðxjÞ

 !
o2

o2m
þ 1 ¼ 0 ð20Þ

which has the solution of

om1;m2

om

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

PJ
j¼1 mjf

2
mðxjÞ

2

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1 mjf

2
mðxjÞ

 �2
4

þ
XJ

j¼1

mjf
2
mðxjÞ

vuuut
vuuuut ; ð21Þ

where om1 and om2 are the frequencies where the lower and upper maxima occur. Defining the
frequency separation between the two peaks as Dom ¼ om2 � om1, we can write

Dom ¼ om

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j¼1

mjf
2
mðxjÞ

vuut : ð22Þ

Examination of Eq. (22) shows that the frequency separation of the new resonances is
a function of each neutralizer’s mass ratio and their location on the host structure. However, the
damping in the neutralizer has no contribution to the frequency separation, and the numerical
simulation in Fig. 2(c) for a single neutralizer verified this. Eq. (22) has the same form as for the
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two-degree-of-freedom system but with additional terms, which is the neutralizer’s location on the
structure. Eq. (22) is also similar to Eq. (9) except for the summation sign.
The effect of using distributed neutralizers is shown in Fig. 2(d) in comparison with a single

neutralizer but with the same total mass. The damping ratio of each neutralizer is fixed at the same
value, which is 0.001. It can be seen that the modal amplitude terms ðfmÞ play an important role in
determining the width of the frequency separation.

3.2. Kinetic energy reduction at the problematic natural frequency

From Fig. 2(c), it can be seen that reducing the neutralizer damping ratio results in a lower
kinetic energy at the tuned frequency. From Fig. 2(a) and (b), it can also be seen that the
reduction in kinetic energy of the beam is also a function of the neutralizer mass and location. In
this section, the effect of these parameters on the kinetic energy of the structure at the tuned
frequency is investigated for a multiple neutralizer’s case.
The mth modal amplitude of the beam with the multiple neutralizers tuned to the same natural

frequency of interest (the mth natural frequency) in Eq. (18) can be simplified as (because O ¼ 1)

qm ¼
gpm

i2Mbzmo2m þ
PJ

j¼1
iMjo2mf

2
mðxjÞ

2zj

ð23Þ

and the kinetic energy is

KEmðtunedÞ ¼
Mbo2m
4

gpm

2Mbzmo2m þ
PJ

j¼1
Mjo2mf

2
mðxjÞ

2zj

0
@

1
A
2

: ð24Þ

KEmðtunedÞ denotes the kinetic energy of the host structure at the mth natural frequency with
neutralizers tuned to this frequency. The kinetic energy when no control device is attached is given
by

KEm ¼
Mbo2m
4

gpm

2Mbzmo2m

� �2
: ð25Þ

By defining the kinetic energy reduction as the ratio of the kinetic energy of the structure,
with tuned neutralizers attached, to the kinetic energy of the structure alone, it can be written
that

KEmðredÞ ¼ KEmðtunedÞ=KEm ¼ 1þ
XJ

j¼1

mjf
2
mðxjÞ

4zjzm

 !�2

; ð26Þ

where KEmðredÞ is the kinetic energy reduction of the beam at its mth natural frequency. If
the damping ratio in the beam and neutralizers are small enough so that 4zjzm5mjf

2
mðxjÞ, then

Eq. (26) can be reduced to

KEmðredÞ ¼ KEmðtunedÞ=KEm ¼
XJ

j¼1

4zjzm

mjf
2
mðxjÞ

 !2
: ð27Þ
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It is clear that the beam kinetic energy is further reduced with a higher mass and smaller damping
ratios of neutralizers. For the same value of neutralizer mass and damping ratios, higher reduction
in kinetic energy can be achieved if neutralizers are fitted at the anti-node of the mode of interest,
and neutralizers located at the nodal point have no effect to the kinetic energy. Again, as shown in
Fig. 2(d), distributing the neutralizers on the structure has no effect on the total kinetic energy
reduction at the natural frequency if their total mass and damping ratios are kept the same as the
mass and damping ratio of the single neutralizer, respectively.
4. Global control of vibration using multiple optimally detuned vibration neutralizers

4.1. Theoretical development

Suppose active control actuators are used to control the kinetic energy of a structure, and the
structure is excited by single-frequency external forces. In this condition, the vector of the modal
amplitudes in Eq. (3) can be written as

q ¼ dþGfc; ð28Þ

where

d ¼ Agp and G ¼ AW: ð29; 30Þ

Substituting for q in Eq. (8) and expanding gives the kinetic energy in the standard Hermitian
quadratic form as

KE ¼
Mbo2

4
ffHc G

HGfc þ fHc G
Hdþ dHGfc þ dHdg: ð31Þ

The kinetic energy in Eq. (31) has a minimum value when the vector of the secondary forces is [19]

fco ¼ �½GHG
�1GHd: ð32Þ

The corresponding optimum vector of modal amplitudes can be written as [16]

qo ¼ fI�G½GHG
�1GHgd: ð33Þ

As has been discussed before, K in Eq. (6) is the dynamic stiffness of the neutralizers. However,
K can also be considered as the equivalent dynamic stiffness of the control forces, fc. If fc is
optimized, it is therefore possible to determine the optimum dynamic stiffness of any control
device that minimizes the kinetic energy. The optimum dynamic stiffness of the neutralizers can be
determined by the following.
Equating the optimum vector of secondary forces in Eq. (32) to the feedback forces from the

neutralizers given in Eq. (6) results in

fco ¼ �KoW
Tqo: ð34Þ

In this equation, Ko is considered as the dynamic stiffness of the optimal secondary forces, fco. If
this optimal condition is imposed on neutralizers, then Ko is the required dynamic stiffness that
has to be generated by the devices so that the kinetic energy can be minimized. Therefore, in this
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case Eq. (34) is better to be written as

fco ¼ �KrW
Tqo; ð35Þ

where Kr is the required dynamic stiffness that has to be generated by the neutralizers.
Eq. (35) has no direct solution for the required dynamic stiffness. In order to get the required

dynamic stiffness for each neutralizer, individual calculation has to be carried out as in the
following. The jth diagonal term in Kr is the required dynamic stiffness for the jth neutralizer (ijth
components are zero because Kr is diagonal) and can be written as

Krj ¼ �f coj½U
TðxjÞqo


�1 ð36Þ

where f coj is the optimum amplitude of the jth secondary force. Eq. (36) can be used in the
determination of the optimum tuning ratio of the jth neutralizer which can be written as [15]

Xoj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

Mjo2

RefKrjg

s
; ð37Þ

where Ref g denotes the real part of the terms inside the bracket. Some detailed discussions
regarding the characteristics of the optimal vibration neutralizers can be found in Ref. [15]. Eq.
(37) can now be substituted into Eq. (5) to get the optimal dynamic stiffness of the jth neutralizer.
Combining with Eqs. (7) and (8) gives the kinetic energy of the structure with optimal neutralizers.
4.2. Simulations

In active vibration control, it is customary to apply the control device at location which does
not coincide to the nodal point of any mode of interest. Therefore, in the following investigation
x ¼ 9L=20 was chosen as the location to apply the control device on the structure, both for the
active device and also for the neutralizer. It has to be mentioned again that the performance by the
active control device is used as a reference to evaluate the performance of the optimal neutralizer.
In the investigation, it is assumed that only the neutralizer stiffness is adjustable but not the

mass and the damping ratio. Therefore, in the real situation, the optimum mass has to be
predetermined before fabricating the neutralizer and the way to do this can be found in Ref. [17].
In the investigation in this paper, ma=za is found to be 40 with neutralizer damping ratio as
za ¼ 0:001, and therefore the neutralizer mass was fixed at 4% of that beam. The same beam
properties and excitation conditions are used as in the previous section.
Using an active control device fixed at 9L=20, a substantial reduction in kinetic energy can be

achieved and this is shown as a dashed line in Fig. 3. At the first natural frequency, the reduction
is as high as 60 dB, and between 10 and 30 dB at other natural frequencies. Using Eq. (36), the
required dynamic stiffness that minimizes the kinetic energy can be determined and is shown in
Fig. 4(a) and (b). The required dynamic stiffness has both real and imaginary parts, and can be
positive or negative. When the real part is positive, the control device is required to produce a
stiffness-like behavior but when it is negative, mass-like behavior is required. On the other hand,
when the imaginary part has a positive value, the control device is required to absorb energy from
the host structure but it is required to supply energy to the host structure when it is negative.
Similar behaviors were observed by Dayou and Brennan [15] for point force excitation.
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It is well known that a neutralizer can change its behavior either to act mass- or stiffness-like
depending on the value of its tuning ratio. Therefore, one can expect that if a neutralizer is fixed at
the same location as the active device ðx ¼ 9L=20Þ, a similar behavior can be produced.
Comparison with Fig. 4(c) and (a) shows that the optimal neutralizer behaves mass-like or
stiffness-like accordingly, similar to that of the real part of the required dynamic stiffness of the
control device. It can also be seen that except at a very low frequency (below the first natural
frequency), the optimal neutralizer produces a similar amplitude to that of the real part of the
required dynamic stiffness. This is because the mass of the neutralizer is optimized only at this
frequency and above.
Examination on Fig. 4(d) shows that the imaginary part of the optimal dynamic stiffness of the

neutralizer has only positive value. This means the neutralizer can only absorb energy from the
host structure but cannot supply energy into it. Although the neutralizer has such a limitation, in
general the reduction in kinetic energy by the application of the device is comparable to that of the
active control device. This interesting finding has been verified in Ref. [16] for point force
excitation.
There are frequency ranges where the imaginary part of the optimal dynamic stiffness of the

neutralizer has no value. These ranges are coinciding with the frequency ranges where no
reduction in kinetic energy can be achieved even with an active control device. In the example
discussed in Fig. 3, these frequency ranges are 110–112, 160–190 and 326–334Hz, which are
labeled as A, B and C, respectively. However, the control device is still required to produce a very
large dynamic stiffness. This can be seen in Fig. 4(a) and (b) for the real and imaginary parts of the
required dynamic stiffness, respectively, where the corresponding frequency ranges are also
labeled as A, B and C.
Further examination of Fig. 4(e) shows that at these frequency ranges, the tuning ratio of the

neutralizer has zero value (also labeled as A, B and C). The possible reason for this is that the
selected neutralizer mass is too large, and the optimum tuning ratio defined by Eq. (37) is purely
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Fig. 4. Characteristics of the optimal control device that minimizes the kinetic energy of the simply supported beam. (a)

Real part of the required dynamic stiffness; (b) imaginary part of the required dynamic stiffness; (c) real part of the

optimal neutralizer dynamic stiffness; (d) imaginary part of the optimal neutralizer dynamic stiffness; (e) optimum

turning ratio of the neutralizer.
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imaginary. In this situation, it is therefore possible to simply remove the device or find another
location where some reductions in kinetic energy can be achieved.
It is well known that in the active control method, the reduction in kinetic energy increases with

the number of active control devices. This is demonstrated in Fig. 5 when two active control
devices fitted at x ¼ 9L=20 and L=6, and the optimal characteristics of the first and second control
device are shown in Figs. 6(a) and (b), and 7(a) and (b), respectively. In comparison with the
single active device in Fig. 3, additional reduction of 5 dB in average can be achieved in the whole
frequency range. At certain frequencies, additional reduction of more than 10 dB can be achieved
which is between 120 and 180Hz.
It is interesting to note that the application of a second neutralizer also result in further

reduction in the kinetic energy, and this is also shown in Fig. 5. It can be seen that the overall
reduction by the neutralizer is comparable with that of the active control device, except again at a
low frequency. With the second neutralizer fitted, the optimal characteristics of the first
neutralizer in Fig. 6(c)–(e) are significantly changed compared to when the neutralizer is acting
alone on the structure (Fig. 4(c)–(e)). There are frequency ranges where the first neutralizer has no
contribution to the reduction in kinetic energy (labeled D and E in Fig. 6(d)) and these ranges are
also different from Fig. 4(d).
The behavior of the second control device is shown in Fig. 7. Fig. 7(a) and (b) are the real and

the imaginary parts of the required dynamic stiffness, respectively, whereas Fig. 7(c) and (d) are
the real and imaginary parts of the optimal dynamic stiffness of the neutralizer and its optimum
tuning is shown in Fig. 7(e). Overall, the neutralizer has to be almost tuned, and always
contributes to the reduction in the kinetic energy.
Higher reduction in kinetic energy of the host structure can be achieved when more control

devices are attached. This is demonstrated in Fig. 8 for three control devices fitted at 9L=20, L=6
and 11L=20 and four control devices at 9L=20, L=6, 11L=20 and 5L=6, both for active control
devices and neutralizers. Again, it is interesting to note that the reduction caused by the
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Fig. 5. Kinetic energy of the beam without control (solid line), with two active devices (dashed line) and with two

neutralizers (dotted line) respectively, fitted at x ¼ 9L=20 and L=6.
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neutralizers is comparable to that of the active control devices except in the low-frequency region.
However, the frequency range where the discrepancy occurs between these two methods increases
with the number of control devices.
There are certain frequencies where although some reductions still can be achieved by using

neutralizers, the reductions are very small compared to that of the active control method. In Fig.
8, these frequencies are 167 and 283Hz with four neutralizers attached at 9L=20, L=6, 11L=20 and
5L=6. This occurrence may be explained as follows. In the optimization procedure suggested in
this paper, it is assumed that only the tuning ratio is adjustable. Therefore, only single-parameter
optimization is possible. At the frequency mentioned above, two-parameter optimization may be
required by optimizing both the tuning and the damping ratios of the neutralizers simultaneously.
However, the frequency range where multi-dimensional optimization is required is very small and
therefore one-dimensional optimization is still very useful.
5. Summary and conclusion

In this paper, the role of the mass, the damping ratio and the positioning of multiple vibration
neutralizers tuned to a particular natural frequency of a continuous structure namely a simply
supported beam, have been discussed. In addition, a method to minimize the kinetic energy of the
structure using multiple vibration neutralizers has also been proposed. For neutralizers tuned to a
particular natural frequency of the host structure, the total of all neutralizers mass multiplied by
their respective locations determines the width of the separation between the two new resonance
frequencies. On the other hand, the neutralizer’s mass, damping ratios and their locations on the
structure influence the reduction that can be achieved in the kinetic energy. These are interesting
findings because of the similarity effects with the two-degree-of-freedom system and with
additional term which is the modal amplitude.
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As the number of optimal neutralizer’s increases, the overall reduction in the kinetic energy of
the structure also increases. Besides that, the reduction in the structural kinetic energy is also
comparable to the reduction that can be achieved by using the feedforward active control
technique. This shows that the optimization procedure discussed in this paper can be used to
provide a good alternative to globally control the vibration of a continuous structure.
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Appendix A

In this appendix, the generalized forcing pressure acting on a simply supported beam in an
infinite baffle is derived. The incident pressure is assumed to be an obliquely incident traveling
plane wave, and is derived from the paper by Roussos [20]. For a one-dimensional structure such
as a beam, one of the incident angles is zero leaving the incident pressure as, for stationary wave

pi ¼ Pie
�ik sinðyiÞx; ðA:1Þ

where Pi; k and yi are the amplitude of the incident acoustic pressure, acoustic wavenumber in air
(k ¼ o=c; c is sound speed in air) and the incident angle of the plane wave, respectively. Therefore,
the generalized forcing pressure per unit length can be written as

gpm ¼

Z L

0

2Pie
�ik sinðyiÞxfmðxÞdx: ðA:2Þ

L is the length of the beam and fm is the beam normalized mode shape function. For a simply
supported beam, the mode shape function is fm ¼

ffiffiffi
2

p
sinðmpx=LÞ.

The integration in Eq. (A.2) can be done in closed form to obtain the generalized forcing
pressure for each mode

gpm ¼ 2
ffiffiffi
2

p
piIm; ðA:3Þ

where

Im ¼

�
j

2
sgn½sin yi
 for ½mp
2 ¼ ½sin yiðkLÞ
2;

mp½1� ð�1Þme�j sin yiðkLÞ


½mp
2 � ½sin yiðkLÞ
2
for ½mp
2a½sin yiðkLÞ
2:

8>><
>>: ðA:4Þ
References

[1] A.H. Von Flotow, A. Beard, D. Bailey, Adaptive tuned vibration absorbers: tuning laws, tracking ability, sizing

and physical implementation, in: Proceedings of Noise-Con 94, 1994, pp. 437–454.



ARTICLE IN PRESS

J. Dayou, S.M. Kim / Journal of Sound and Vibration 281 (2005) 323–340340
[2] J.P. Den Hartog, Mechanical Vibration, McGraw-Hill, New York, 1956.

[3] J.B. Hunt, Dynamic Vibration Absorbers, Mechanical Engineering Publication, London, 1979.

[4] C.F. Beards, Engineering Vibration Analysis with Application to Control Systems, Edward Arnold, London, 1995.

[5] D. Young, Theory of dynamic vibration absorber for beams, in: Proceedings of the First US National Congress of

Applied Mechanics, 1952, pp. 91–96.

[6] D.I.G. Jones, Response and damping of a simple beam with tuned damper, Journal of the Acoustical Society of

America 42 (1) (1967) 50–53.

[7] H.N. Ozguven, B. Candir, Suppressing the first and second resonances of beams by dynamic vibration absorbers,

Journal of Sound and Vibration 111 (3) (1986) 377–390.

[8] V.H. Neubert, Dynamic absorbers applied to a bar that has a solid damping, Journal of the Acoustical Society of

America 36 (4) (1964) 673–680.

[9] D.I.G. Jones, A.D. Nashif, R.L. Adkins, Effect of tuned dampers on vibrations of simple structure, AIAA Journal

5 (2) (1967) 310–315.

[10] Z. Sun, J. Sun, C. Wang, Y. Dai, Dynamic vibration absorbers used for increasing the noise transmission loss of

aircraft panels, Applied Acoustics 48 (4) (1996) 311–321.

[11] F. Charette, C.R. Fuller, J.P. Carneal, Control of sound radiation from plates using globally detuned absorbers,

Journal of the Acoustical Society of America 100 (4) (1996) 2781.

[12] F. Charette, C.R. Fuller, J.P. Carneal, Adaptive vibration absorbers for control of sound radiation from panels, in:

Proceedings of the Third AIAA/CEAS Aeroacoustics Conference, Atlanta, CA, 1997, pp. 1–11.

[13] Y.M. Huang, C.R. Fuller, The effects of dynamic absorbers on the forced vibration of a cylindrical shell and its

coupled interior sound fields, Journal of Sound and Vibration 200 (4) (1997) 401–418.

[14] Y.M. Huang, C.R. Fuller, Vibration and noise control of the fuselage via dynamic absorbers, Journal of Vibration

and Acoustics 120 (1998) 496–502.

[15] J. Dayou, M.J. Brennan, Optimal tuning of a vibration neutralizer for global vibration control, Proceedings of the

Institution of Mechanical Engineers, Journal of Mechanical Engineering Science 215 (2001) 933–942.

[16] Jedol Dayou, M.J. Brennan, Experimental verification of the optimal tuning of a tunable vibration neutralizer for

global vibration control, Applied Acoustics 64 (3) (2003) 311–323.

[17] M.J. Brennan, J. Dayou, Global control of vibration using a tunable vibration neutralizer, Journal of Sound and

Vibration 232 (3) (2000) 585–600.

[18] Jedol Dayou, M.J. Brennan, Global control of structural vibration using multiple-tuned tunable vibration

neutralizers, Journal of Sound and Vibration 258 (2) (2002) 345–357.

[19] P.A. Nelson, S.J. Elliott, Active Control of Sound, Academic Press, New York, 1992.

[20] L.A. Roussos, Noise transmission loss of a rectangular plate in an infinite baffle, NASA Technical Paper 2398,

1985.


	Control of kinetic energy of a one-dimensional structure using multiple vibration neutralizers
	Introduction
	Kinetic energy of a structure
	Control of kinetic energy using multiple vibration neutralizers tuned to a natural frequency of a structure
	Frequency separation of the new resonances with multiple tuned neutralizers attached
	Kinetic energy reduction at the problematic natural frequency

	Global control of vibration using multiple optimally detuned vibration neutralizers
	Theoretical development
	Simulations

	Summary and conclusion
	Acknowledgements
	References


